- B May 28, Class 11B, Week 5, Lesson B
- The following students should complete this assignment Lesson B: Federman, Perlow, Schecter. Read pages 103 and 104 attached
- Do the attached problems pages 1 throuh 6

Rotations

Rotations of 90° will result in a line perpendicular to the original, so the slope will be the negative reciprocal. To write the equation of a line after a 90° rotation, use the same procedure for translations and dilations, except use the negative reciprocal of the slope.

EQUATION OF THE CIRCLE

Center Radius Form of the Equation of a Circle

$(x-h)^{2}+(y-k)^{2}=r^{2}$ where the center has coordinates (h, k) and radius has length r.

- To graph a circle, first identify the center and radius from the equation. Plot a point at the center. Then plot points up, down, left, and right a distance r from the center.

Example:

Graph the equation $(x-2)^{2}+(y+1)^{2}=9$.

The center is located at $(2,-1)$, and $r^{2}=9$, so $r=3$. We plot the center point at $(2,-1)$; then plot points up, down, right, and left 3 units from the center. Use these four points as a guide to complete the circle.

104 A Brief Review of Key Geometry Facts and Skills

General Form of the Equation of a Circle

$$
x^{2}+y^{2}+C x+D y+E=0
$$

To find the coordinates of the center and the radius from the general form of the equation, you will need to convert it to the center-radius form using the following procedure:

1. Group the x-terms and y-terms on one side of the equation, and the constant on the other side of the equation.
2. Complete the square with the x-terms, and then complete the square with the y-terms.

Example:

- Find the coordinates of the center and the length of the radius of a circle whose equation is $x^{2}+4 x+y^{2}-6 y+7=0$.

Solution:

Bring the constant term to the right.

$$
x^{2}+4 x+y^{2}-6 y=-7
$$

The coefficient of x is 4 , so a constant term of $\left(\frac{4}{2}\right)^{2}$, or 4 , is needed to complete the square with the x-terms. The coefficient of y is -6 , so a constant term of $\left(\frac{-6}{2}\right)^{2}$, or 9 , is needed to complete the square with the y-terms.

$$
\begin{aligned}
x^{2}+4 x+4+y^{2}-6 y+9 & =-7+4+9 \\
(x+2)^{2}+(y-3)^{2} & =6
\end{aligned}
$$

The center has coordinates $(-2,3)$ and the radius has a length of $\sqrt{6}$.

Use this space for computations.

1. The equation of a circle is $(x-2) 2+(y+4) 2=4$. Which diagram is the graph of the circle?

(1)

(2)

(3)

(4)

Use this space for computations.

2. The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of
(1) the angle bisectors of $\triangle A B C$
(2) the medians to the sides of $\triangle A B C$
(3) the altitudes to the sides of $\triangle A B C$
(4) the perpendicular bisectors of the sides of $\triangle A B C$

Use this space for computations.

$$
(x-5)^{2}+(y+1)^{2}=9 ?
$$

Use this space for computations.

4 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5?
(1) $(x-2)^{2}+(y+3)^{2}=5$
(3) $(x+2)^{2}+(y-3)^{2}=25$
(2) $(x+2)^{2}+(y-3)^{2}=5$
(4) $(x-2)^{2}+(y+3)^{2}=25$ computations.
5 What is an equation for the circle shown in the graph below?

(1) $x^{2}+y^{2}=2$
(3) $x^{2}+y^{2}=8$
(2) $x^{2}+y^{2}=4$
(4) $x^{2}+y^{2}=16$

Use this space for computations.

6 Triangle $R S T$ is graphed on the set of axes below.

How many square units are in the area of $\triangle R S T$?
(1) $9 \sqrt{3}+15$
(3) 45
(2) $9 \sqrt{5}+15$
(4) 90

