GEOMETRY 9a Lesson A Week Three Mr. Dinallo

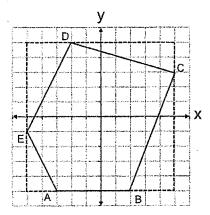
There are two lessons for class 9a. You are to do lesson A if your name is listed below.

If your name is not listed below you are to do lesson B.

The following students are to complete this: lesson A. Arzoin, Blum, Czitter, Davis, Emir, Freedman, Klein, Levine, Neiman, Silverman, zahler, zaltsman(12)

Coordinate geometry lesson A Learning intention: how to find the area of an irregular shape and equation of a line.

Materials: for this lesson students graph paper and ruler


Assignment: in the Barron's or see attachment below, read pages:

101 equation of lines, 102 and 103 rotations. Do problems: page 105: 1-4 show your work.

Submit

Example:

Find the area of polygon ABCDE, with vertices A(-3, -5), B(2, -5), C(5, 3), D(-2, 5), and E(-5, -1).

Solution:

Sketch the bounding rectangle in around *ABCDE*.

The length is 10 and the width is 10, giving an area of 100.

The triangles have areas:

upper left triangle =
$$\frac{1}{2}(3 \cdot 6) = 9$$

upper right triangle =
$$\frac{1}{2}(7 \cdot 2) = 7$$

lower left triangle =
$$\frac{1}{2}(4 \cdot 2) = 4$$

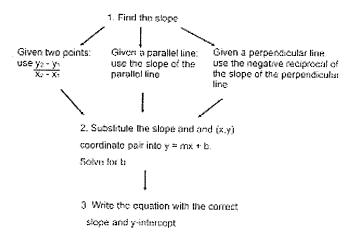
lower right triangle =
$$\frac{1}{2}(3 \cdot 8) = 12$$

The area of
$$ABCDE = 100 - 9 - 7 - 4 - 12 = 68$$

COLLINEARITY

Three points are **collinear** if the slopes between any two pairs are equal. For example, points A, B, and C are collinear if the slope of \overline{AB} equals the slope of \overline{BC} .

EQUATIONS OF LINES


- The slopes of parallel lines are equal.
- The slopes of perpendicular lines are negative reciprocals. (If the slope of line m is $\frac{2}{3}$, then the slope of any line perpendicular to m is $-\frac{3}{2}$.)

102 A Brief Review of Key Geometry Facts and Skills

The equation of a line in slope-intercept form is y = mx + b where m is the slope and b is the y-intercept. To graph the line, plot a point on the y-axis at the y-intercept. From that point, plot additional points using the rise and run from the slope.

• The equation of a line in point-slope form is $y - y_1 = m(\hat{x} - x_1)$ where m is the slope and (x_1, y_1) are the coordinates of any point on the line. To graph the line, plot the first point at (x_1, y_1) . From that point, plot additional points using the rise and run from the slope.

Strategy for writing the equation of a line in slope-intercept form:

TRANSFORMATIONS AND LINES

Translations and Dilations

Translations and dilations preserve slope, so the slope of the image will be the same as the slope of the pre-image.

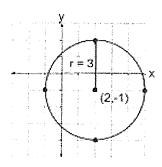
To translate or dilate a line given its equation,

- Choose any point on the line (the y-intercept is often an easy choice).
- 2. Apply the translation or dilation to that point.
- 3. Find the equation of the line that has the same slope as the original line and passes through the transformed point.

Rotations

Rotations of 90° will result in a line perpendicular to the original, so the slope will be the negative reciprocal. To write the equation of a line after a 90° rotation, use the same procedure for translations and dilations, except use the negative reciprocal of the slope.

EQUATION OF THE CIRCLE


Center Radius Form of the Equation of a Circle

 $(x-h)^2 + (y-k)^2 = r^2$ where the center has coordinates (h,k) and radius has length r

• To graph a circle, first identify the center and radius from the equation. Plot a point at the center. Then plot points up, down, left, and right a distance *r* from the center.

Example:

Graph the equation $(x-2)^2 + (y+1)^2 = 9$.

The center is located at (2, -1), and $r^2 = 9$, so r = 3. We plot the center point at (2, -1); then plot points up, down, right, and left 3 units from the center. Use these four points as a guide to complete the circle.

Practice Exercises

I. Points A(2, -1) and B(8, -3) lie on line m. After a rotation of 90° about the origin, the images of A and B are A' and B'. If A'and B' lie on line n, what is the equation of line n?

$$(1)\,y=-3x+2$$

$$(3) y = 3x - 1$$

(2)
$$y = -\frac{1}{3}x - \frac{1}{3}$$
 (4) $y = \frac{1}{3}x + 6$

$$(4) y = \frac{1}{3}x + 6$$

2. What is the equation of the line 6x + 2y = 12 after a dilation by a scale factor of 5?

$$(1) y = -3x + 30$$

$$(3) y = -15x + 30$$

$$(4) y = -15x + 6$$

$$(2) y = -3x + 6$$

$$(4) y = -15x + 6$$

3. Which of the following lines is perpendicular to the line x + 4y = 8?

(1)
$$y = -\frac{1}{4}x + 2$$
 (3) $y = \frac{1}{4}x + 2$

$$(3) y = \frac{1}{4}x + 2$$

(2)
$$y = 4x + 3$$

$$(4) y = -4x + 3$$

4. Which of the following is the equation of a line parallel to 2x + 3y + 6 = 0 and passes through the point (6, 1)?

$$(1) y = -\frac{2}{3}x + 5$$

$$(3)\,y = -2x + 13$$

$$(2) y = 2x - 11$$

(2)
$$y = 2x - 11$$
 (4) $y = -\frac{2}{3}x + 3$